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Abstract

Replication Protein A (RPA) is an essential single-stranded DNA (ssDNA) binding protein that 

initiates the DNA damage response pathway through protein-protein interactions (PPIs) mediated 

by its 70N domain. The identification and use of chemical probes that can specifically disrupt 

these interactions is important for validating RPA as a cancer target. A high throughput screen 

(HTS) to identify new chemical entities was conducted and identified 90 hit compounds. From 

these initial hits, an anthranilic acid-based series was optimized using a structure-guided iterative 

medicinal chemistry approach to yield a cell penetrant compound that binds to RPA70N with an 

affinity of 812 nM. This compound (20c) is capable of inhibiting protein-protein interactions 

mediated by this domain.
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Introduction

Replication Protein A (RPA), the primary single strand DNA (ssDNA) binding protein in 

eukaryotes, is essential for DNA replication, damage response and repair. In addition to 

binding to and protecting ssDNA from degradation, RPA recruits partner proteins involved 

in these processes. RPA is comprised of three subunits, each bearing OB-fold domains.1,2 

The N-terminal domain of the 70-kDa subunit (RPA70N) is one of two key sites that 

mediates the recruitment of partner proteins.3 This domain is particularly important for the 
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recruitment of DNA damage response proteins to sites of DNA damage via interaction with 

the RPA70N central basic cleft.3–6

Based on the key role of RPA70N-mediated protein-protein interactions (PPIs) in initiating 

the DNA damage response, it is possible that specific inhibition of this RPA function may 

represent an attractive pathway for therapeutic intervention in cancer. We and others are 

pursuing inhibitors of the RPA70N-mediated PPIs that do not interfere with the ability of 

RPA to bind to and protect ssDNA, as these would allow for further exploration of the role 

of RPA in checkpoint signaling, enable studies to confirm the therapeutic potential of RPA 

inhibition, and serve as a potential starting point for new cancer drugs.

Based on this unique opportunity for small molecule inhibitors of RPA as potential cancer 

therapeutics, research on RPA inhibitors has intensified over the last several years. Turchi 

and colleagues have identified dihydropyrazole 1 (Figure 1), which binds to a DNA-binding 

domain of RPA and disrupts its interaction with ssDNA.7,8 Oakley and colleagues identified 

fumaropimaric acid (2; Figure 1), which was shown to disrupt both RPA70N-Rad9 and 

RPA70N-p53 interactions.9,10 The Oakley laboratory has also reported on HAMNO (3, 

Figure 1), which was shown to inhibit RPA binding to RAD9 and cause increased replicative 

stress and cytotoxicity in cancer cells and slowed the progression of squamous cell 

carcinoma in a xenograft model.11

We have previously reported on the results of an NMR-based fragment screen to identify 

novel molecules that bind to RPA70N. This screen revealed several distinct chemotypes of 

fragments that bind to the domain. Remarkably, this single screen identified two distinct 

binding locations in the basic cleft of RPA70N (Site-1 and Site-2) which can be 

independently and simultaneously occupied by two different compounds.12,13 From these 

results, we have also described the results of two optimization campaigns. Initially a 

fragment merging strategy was employed, resulting in triazole 4 (Figure 1), which bound to 

only one site in the basic cleft.12 We have also described the results of a fragment linking 

strategy to generate compounds that span the entire cleft and incorporate features of two 

distinct fragment hits (5, Figure 1).13 Here, we describe a different class of molecules that 

was identified using a high throughput screen (HTS) and further optimized using iterative 

medicinal chemistry and structure-based design.

Results and Discussion

Using a previously reported fluorescence polarization anisotropy (FPA) screening assay, 

90,000 compounds from the Vanderbilt collection were screened at a single concentration of 

30 µM for their ability to disrupt the binding of a fluorescently labeled ATRIP-derived probe 

to RPA70N.14 This screen identified 674 compounds that displaced >10% of the probe from 

RPA70N at this concentration. These initial hits were further filtered to remove compounds 

that exhibited fluorescence interference and were prioritized for follow-up on the basis of the 

lack of potentially reactive chemical functionality and concordance with commonly accepted 

measures of drug-likeness.15,16 After this analysis, concentration response curves were 

collected for 90 compounds to determine IC50 values from which Kd values were calculated. 
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Of these 90 compounds, 52 were identified with a Kd less than 100 µM. Several of the most 

potent hits are depicted in Figure 2.3–6

Compound 6, with the highest ligand efficiency amongst the hit set, was briefly investigated. 

The results from this work were reported previously.17 Because of the high lipophilicity of 

the series and generally flat SAR, further work on the series was halted. Notably, Turchi and 

coworkers previously described a series of inhibitors of the interaction of RPA and ssDNA 

with a chemical structure similar to compound 9.17 Compounds 7 and 8 were of relatively 

low interest. Compounds 10 and 11 are similar and together form an anthranilic acid-based 

series. SAR evident in the HTS hit set indicated the nitro group was essential for binding of 

ether-based exemplars such as 10. Because of this, as well as the reasonably favorable 

combination of potency, ligand efficiency (LE), and the prospect of a modular synthetic 

route, we focused follow-up efforts onto sulfonamide variants such as compound 11.

To guide the optimization of 11, a co-crystal structure of compound 11 in complex with 

RPA70N was obtained (Figure 3). The binding mode of compound 11 shares several 

important contacts with the binding mode of the p53 peptide and our previously reported 

molecules. The 4-bromophenyl portion of the molecule occupies the hydrophobic Site-1 

pocket (Figure 3A), but lies flat against the surface of RPA70N and sits in a much more 

shallow position as compared to compounds 4 and 5 (Figure 3C). The sulfonamide of the 

molecule appears to establish the proper geometry necessary to orient the 4-bromophenyl 

into Site-1. The middle phenyl ring occupies the center of the RPA70N cleft and overlays 

well with the indole moiety of the tryptophan of the p53 peptide18 (Figure 3B) or the 

phenylalanine of a previously reported ATRIP-derived peptide19. The carboxylic acid of the 

anthranilic acid portion of the molecule engages in a charge-charge interaction with Arg41 

of RPA70N, a common interaction amongst our fragments and linked small molecule 

inhibitors of RPA70N. In addition, compound 11 also makes a unique H bond interaction to 

Asn85 of RPA70N using the carbonyl oxygen of the amide bond. We hypothesized the 

amide in this molecule was important due to both this interaction with RPA and its ability to 

form an internal H bond with the anthranilic acid of the molecule, thus maintaining the 

planarity of the molecule in its binding pose.

Based upon the binding mode of hit molecule 11 and our previous knowledge of small 

molecules binding to RPA70N, we devised a strategy to improve potency by optimizing the 

hydrophobic interactions of each of the phenyl rings while maintaining the hydrophilic 

interactions of the amide and carboxylic acid of the molecule. The first goal was to optimize 

the phenyl sulfonamide portion of the molecule for binding to the hydrophobic pocket of 

Site-1. An initial compound library containing various phenyl substituents and phenyl 

replacements was constructed, using a combination of chemical synthesis and analog 

purchases. Despite the majority of the analogs being less potent than the original hit, this 

library provided important SAR insights (Table 1).

Analogs bearing a 3-Cl or 4-Cl (18, 19) were equipotent with 11, while non-halogen 

substituents such as 3-Me, 4-Me, or 4-OMe (13, 14, or 15) were 5–8 fold less potent. In 

concordance with previously described SAR, analog 20 (3,4-diCl) displayed the best binding 

affinity of the initial set, showing a 4-fold improvement over 11. Both of the chlorine atoms 
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were necessary, as replacing either or both with a methyl group (21–23) reduced binding 

affinity by 6–20 fold compared with 20. Methylation of the sulfonamide was not tolerated, 

as all methylated analogs were 2–5 fold less potent than the des-methyl analogs (data not 

shown). Replacement of the phenyl ring with saturated ring systems (27–32, 34, and 35) in 

attempts to increase the hydrophobic interactions and increase the sp3 character of the 

molecule, were unsuccessful, as all analogs were 2–10 fold lower in binding affinity to 

RPA70N. Surprisingly, the 3,4-diCl substituted biphenyl 25 had an affinity of 4 µM, despite 

its increased size within Site-1. However, derivatives of this molecule were not pursued 

further due to poor LE (0.20) and cLogP (6.08), as well as potential solubility limitations.

To explore the SAR around the phenyl ring of the anthranilic acid portion of the molecule, a 

library of analogs was synthesized with varying R2 substituents, while R1 was fixed as either 

3,4-diCl, 3-Cl, or 4-Br. From this library, several clear SAR tends emerged (Table 2). 

Halogen R2 options were more beneficial at the 4-position, as compared to the 5-position, 

leading to an improvement of 2–10 fold. This observation can be rationalized from the co-

crystal structure, in which one can envision the 5-position substitution clashing with the lip 

of the cleft, whereas the 4-position substitution is oriented towards a hydrophobic gap. A 5-

Cl substitution at R2 consistently led to poor physicochemical properties, such as limiting 

solubility, as evidenced by precipitation under the assay conditions.

The most effective option at R2 for all three different R1 substitutions was replacement of 

the anthranilic acid phenyl ring with a naphthyl moiety (11l, 18l, 20l). These analogs 

displayed binding affinities of 1–4 µM. Based on the co-crystal structure of 11, the naphthyl 

substitution most likely occupies the hydrophobic space adjacent to both the 4- and 5-

positions. The analog with the best binding affinity (20c), however, contained a 3,4-diCl R1 

substitution and a 4-Br R2 substitution. This analog was slightly superior to the R2 = 

naphthyl analog (20l) and had a more attractive LE (0.27 compared to 0.24 for 20l). Further, 

compound 20c represents the best binding affinity yet observed for a molecule with only one 

acidic moiety.

The final strategy to optimize compound 11 was exploration of several substituents at R3 on 

the middle phenyl ring. However, several planned analogs (R3 = Cl, Br, or OMe, for 

example) were synthetically intractable, since intermediates required for the synthesis of 

these molecules were unstable under the conditions necessary for sulfonamide formation or 

saponification. Despite these challenges, several alkyl analogs were obtained (Table 3). The 

des-methyl analog 20m was 2-fold less potent than compound 20. Further extension of the 

methyl to an ethyl (20n) or isopropyl group (20o) showed marginal improvements in affinity 

(Kd = 4 and 5 µM, respectively). However, this slight gain in potency was offset by a 

decrease in solubility of these analogs, with both 20n and 20o showing some evidence of 

precipitation at the highest concentrations under the assay conditions.

Using a standard fluorescence-based DNA binding assay, we established that compound 20c 
does not affect ssDNA binding to RPA; the Kd value for ssDNA binding to RPA70AB in the 

RPA70NAB construct was the same in the absence and presence of the compound. Thus, 

20c appears to bind selectively to the RPA70N domain. Further, compound 20c was taken 

forward for characterization in cellular studies. The molecule was found to possess very high 
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protein binding (99.8%), but also exhibits high permeability (Papp A–B value of 29.2 × 10−6 

cm/sec in the Caco-2 line) relative to our previously reported compounds. Studies to define 

the cellular activity of this compound are underway and will be reported in due course.

Chemistry

The synthesis of the anthranilic acid-based inhibitors 11–36 utilized a modular route, 

allowing for the introduction of diversity at each step and only one chromatographic 

purification.21 The synthesis begins with an aromatic sulfonylation, upon treating a para-

substituted benzoic with chlorosulfonic acid. The carboxylic acid (40–42) is converted to an 

acid chloride and the methyl ester of the appropriate anthranilic acid is added to afford 

sulfonyl chlorides in greater than 90% yield. After a water work up, the final substituted 

phenyl ring is added to the sulfonyl chloride by the addition of the appropriate substituted 

aniline. This is followed by saponification of the methyl ester to yield the desired analog.

Conclusions

We have conducted a high throughput screen and initial compound optimization towards the 

discovery of new and selective chemical probes to validate inhibition of the protein-protein 

interactions mediated by RPA70N. Inhibitor 11 was initially identified as an attractive 

starting point for structure-based optimization. Subsequent optimization using an iterative 

medicinal chemistry process and structure-based design principles led to the discovery of 

20c, which binds to RPA70N with an affinity of 812 nM and displays adequate permeability 

and solubility characteristics for use in cellular studies.

Experimental Section

Chemistry

General Methods—All chemicals, reagents, and solvents were used as purchased from 

commercial sources, without further purification. All NMR spectra were recorded at room 

temperature on a 400 MHz Bruker spectrometer with a DRX-400 console, a 500 MHz 

Bruker spectrometer with a DRX-500 console, or a 600 MHz Bruker spectrometer with an 

AV-II console. 1H chemical shifts are reported in δ values in ppm downfield with the 

deuterated solvent as the internal standard. Data are reported as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet, ovlp 

= overlap), coupling constant (Hz), and integration. Low-resolution mass spectra were 

obtained on an Agilent 1200 series 6140 mass spectrometer with electrospray ionization. All 

samples were of ≥90% purity as analyzed by LC−UV/vis−MS. Analytical HPLC was 

performed on an Agilent 1200 series with UV detection at 214 and 254 nm along with 

ELSD detection. LC−MS parameters were as follows: Phenomenex-C18 Kinetex column, 50 

mm × 2.1 mm, 2 min gradient, 5% to 100% (H2O/MeCN with 0.1% TFA). Preparative 

purification was performed on a Gilson HPLC (Phenomenex-C18, 100 mm × 30 mm, 10 

min gradient, (H2O/MeCN with 0.1% TFA) or by automated flash column chromatography 

(Teledyne Isco, Inc. Combiflash Rf).
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General Procedure for anthranilic acid-based inhibitors

The anthanilic-based inhibitors 11a–l, 12–17, 18a–l, 19, 20a–p, and 21–36 were prepared 

by the similar procedures. This procedure is exemplified for compound 11.18

3-(Chlorosulfonyl)-4-methylbenzoic acid 40—4-methylbenzoic acid 37 (1.0 g, 7.35 

mmol, 1 eq) was dissolved in chlorosulfonic acid (10 mL). The reaction was heated t reflux 

and stirred overnight. The next day, the reaction was cooled to room temperature and then 

poured onto ice. The solid was filtered, dissolved in DCM, and washed with 1M HCl. The 

DCM layer was then driesd (Na2SO4) and evaporated in vacuo to give the desired product 

37 (1.22 g, 71%). 1H-NMR (600 MHz, DMSO-d6): δ = 8.32 (d, J = 1.9 Hz, 1 H), 7.77 (dd, J 
= 2.0 Hz, 7.7 Hz, 1 H), 7.26 (d, J = 7.9 Hz, 1 H), 2.58 (s, 3H). 13C-NMR (125 MHz, DMSO-

d6): δ =167.2, 146.4, 141.2, 131.2, 129.6, 127.7, 127.5, 20.3. MS (ESI) [M + H]+ m/z = 

234.9.

Methyl 2-(3-(chlorosulfonyl)-4-methylbenzamido)benzoate 43a—The intermediate 

40 (235 mg, 1 mmol, 1 eq) was dissolved in thionyl chloride (4 mL). The reaction was 

heated to 75°C and stirred for 4 hours. Solvents were removed in vacuo. The resulting syrup 

was dissolved in toluene (3 × 5 mL) and evaporated. The product was taken forward without 

further purification.

The appropriate methyl-2-aminobenzoate (151 mg, 1 mmol, 1 eq) was dissolved in THF (4 

mL) and NaH (40 mg, 1 mmol, 1 eq) was added and stirred for 20 min. The acyl chloride (1 

mmol, 1 eq) was added and the reaction was stirred at rt for 2 hours. The reaction was 

diluted with DCM and washed with water. The DCM layer was dried (Na2SO4) and then 

evaporated in vacuo. The residue was taken forward without further purification (367 mg, 

quantitative). 1H-NMR (600 MHz, DMSO-d6): δ = 8.57 (dd, J = 0.8 Hz, 8.5 Hz, 1 H), 8.39 

(d, J = 2.1 Hz, 1 H), 8.00 (dt, J = 1.9 Hz, 8.0 Hz, 1 H), 7.80 (dd, J = 2.1 Hz, 7.8 Hz, 1 H), 

7.67 (m, 1 H), 7.37 (d, J = 7.9 Hz, 1 H), 7.22 (m, 1 H), 3.90 (s, 3 H), 2.62 (s, 3 H). 13C-

NMR (150 MHz, DMSO-d6): δ = 168.0, 164.7, 146.9, 140.5, 140.3, 134.3, 131.4, 131.1, 

130.8, 127.0, 125.7, 123.3, 120.9, 117.1, 52.7, 20.2. MS (ESI) [M + H]+ m/z = 368.0.

2-(3-(N-(4-bromophenyl)sulfamoyl)-4-methylbenzamido)benzoic acid 11—The 

sulfonyl chloride 43a (62 mg, 0.17 mmol, 1 eq) was dissolved in toluene (2 mL). The 4-

bromoaniline (86 mg, 0.5 mmol, 3 eq) is added and the rxn is stirred at 70°C overnight. The 

solvents were removed in vacuo. The resulting residue was dissolved in DCM and washed 

with water. The DCM layer was evaporated in vacuo and the residue was dissolved in THF 

(2 mL) and 2M LiOH (0.5 mL) was added. The reaction was stirred at 55°C for 2 hours. The 

reaction was neutralized with 2 M HCl (0.5 mL) and the solvents were removed in vacuo. 

The residue was purified via preparative HPLC to give the desired product (23 mg, 

28%). 1H-NMR (600 MHz, DMSO-d6): δ = 10.78 (s, 1 H), 8.67 (dd, J = 0.8 Hz, 8.4 Hz 1 

H), 8.52 (d, J = 1.9 Hz, 1 H), 8.08-8.05 (m, 2 H), 7.68 (m, 1 H), 7.62 (d, J = 8.1 Hz, 1 H), 

7.43-7.41 (m, 2 H), 7.24 (m, 1 H), 7.09-7.06 (m, 2 H), 3.39 (broad s, 1 H), 2.66 (s, 3 

H). 13C-NMR (150 MHz, DMSO-d6): δ = 170.6, 163.5, 141.6, 141.3, 138.3, 137.1, 134.9, 

134.1, 133.0, 132.7, 131.9, 131.8, 128.7, 123.8, 121.5, 120.5, 117.2, 116.2, 20.2. MS (ESI) 

[M + H]+ m/z = 489.1.
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2-(3-(N-(3-chlorophenyl)sulfamoyl)-4-methylbenzamido)benzoic acid 18—
Synthesized according to procedure for 11 in 42% yield. 1H-NMR (600 MHz, DMSO-d6): δ 

= 10.88 (s, 1 H), 8.67 (dd, J = 0.9 Hz, 8.4 Hz 1 H), 8.55 (d, J = 1.9 Hz, 1 H), 8.09-8.06 (m, 2 

H), 7.68 (m, 1 H), 7.63 (d, J = 8.1 Hz, 1 H), 7.27-7.23 (m, 2 H), 7.12-7.09 (m, 2H), 7.04 (m, 

1H), 3.40 (broad s, 1 H), 2.67 (s, 3 H). 13C-NMR (150 MHz, DMSO-d6): δ = 170.1, 162.9, 

141.2, 140.7, 138.8, 137.8, 134.4, 133.6, 133.5, 132.5, 132.4, 131.4, 131.3, 131.1, 128.2, 

123.4, 123.3, 120.0, 118.1, 116.9, 19.7. MS (ESI) [M + H]+ m/z = 445.2.

4-Bromo-2-(3-(N-(3-chlorophenyl)sulfamoyl)-4-methyl benzamido)benzoic acid 
18c—Synthesized according to procedure for 11 in 34% yield. 1H-NMR (600 MHz, 

DMSO-d6): δ = 10.91 (s, 1 H), 8.93 (d, J = 2.0 Hz 1 H), 8.55 (d, J = 2.0 Hz, 1 H), 8.06 (dd, J 
= 1.8 Hz, 7.4 Hz, 1 H), 7.99 (d, J = 8.4 Hz 1 H), 7.63 (d, J = 8.0 Hz, 1 H), 7.44 (dd, J = 2.0 

Hz, 8.6 Hz, 1 H), 7.27 (t, J = 8.1 Hz 1 H), 7.13-7.10 (m, 2 H), 7.05 (m, 1 H), 3.42 (broad s, 1 

H), 2.68 (s, 3 H). 13C-NMR (150 MHz, DMSO-d6): δ = 168.0, 161.5, 140.1, 139.8, 137.1, 

136.2, 132.1, 131.9, 131.3, 130.3, 129.8, 129.5, 126.6, 126.1, 124.5, 121.8, 120.6, 116.5, 

115.2, 114.2, 18.1. MS (ESI) [M + H]+ m/z = 568.9.

4-Bromo-2-(3-(N-(3,4-dichlorophenyl)sulfamoyl)-4-methyl benzamido)benzoic 
acid 20c—Synthesized according to procedure for 11 in 42% yield. 1H-NMR (600 MHz, 

DMSO-d6): δ = 11.05 (s, 1 H), 8.92 (d, J = 2.1 Hz 1 H), 8.53 (d, J = 1.9 Hz, 1 H), 8.06 (dd, J 
= 1.9 Hz, 7.9 Hz, 1 H), 7.98 (d, J = 8.5 Hz 1 H), 7.64 (d, J = 8.2 Hz, 1 H), 7.50 (d, J = 8.8 Hz 

1 H), 7.43 (dd, J = 2.1 Hz, 8.5 Hz, 1 H), 7.28 (d, J = 2.6 Hz 1 H), 7.12 (dd, J = 2.6 Hz, 8.9 

Hz, 1 H), 3.39 (broad s, 1 H), 2.67 (s, 3 H). 13C-NMR (150 MHz, DMSO-d6): δ = 169.6, 

163.1, 141.8, 141.5, 137.6, 137.4, 133.8, 133.0, 132.1, 131.6, 131.6, 131.4, 128.2, 127.7, 

126.1, 125.6, 122.2, 119.8, 118.3, 115.8, 19.7. MS (ESI) [M + H]+ m/z = 556.9.

Fluorescence Polarization Anisotropy (FPA) Assays

90,000 compounds from the Vanderbilt Institute of Chemical Biology compound collection 

were screened at the High Throughput Screening core at a single concentration of 30 mM 

for their ability to disrupt the binding of an ATRIP-based probe to RPA70N. The protocol is 

described in full detail in Souza-Fagundes, E.M., et al., Anal Biochem, 2012.14

FPA competition assays were conducted as previously described with minor 

modifications.12,14 Compounds were diluted in a 10-point, 3-fold serial dilution scheme in 

DMSO for a final concentration range of 500 – 0.025 µM. Compounds were added to assay 

buffer (50 mM HEPES, 75 mM NaCl, 5 mM DTT, pH 7.5) containing FITC-labeled probe 

and appropriate RPA70 protein in a final reaction volume of 50 µL containing 5% DMSO. 

All assays were conducted using a protein concentration equal to 1× Kd for the protein/probe 

interaction. Therefore, competition for binding to RPA70N was measured using either the 

FITC-ATRIP peptide (FITC-Ahx-DFTADDLEELDTLAS-NH2; 50 nM with 6 µM RPA70N) 

or the FITC-ATRIP2 peptide (FITC-Ahx-DFTADDLEEWFAL-NH2; 25 nM with 350 nM 

RPA70N). Binding to RPA70NAB was measured using 200 nM RPA70NAB and 25 nM 

FITC-ATRIP2. Following incubation for 1h, emission anisotropy was measured using the 

EnVision plate reader (Perkin Elmer). IC50 values were generated using a four-parameter 
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dose-response (variable slope) equation in XLfit and were converted to Kd values. Reported 

Kd values are the average of two independent experiments, run in duplicate.

X-ray crystal structures of complexes with RPA70N—Crystals of the E7R mutant of 

RPA70N were grown as described previously.20 X-ray diffraction data were collected at 

sector 21 (Life Sciences Collaborative Access Team, LS-CAT) of the Advanced Photon 

Source (Argonne, IL). All data were processed by HKL-2000.22 E7R crystallized in space 

group P212121 and contained one molecule in the asymmetric unit. Initial phases were 

obtained by molecular replacement with PHASER23 using the structure of the free protein 

(4IPC) as a search model. Iterative cycles of model building and refinement were performed 

using COOT24 and PHENIX.25 The structure of compound 20c bound to E7R are deposited 

at the Protein Data Bank under accession code 5E7N. The program Pymol (Schrödinger) 

was used to visualize and analyze the structures.

Protein Binding and Cellular Permeability Studies—The studies on 20c were 

performed by Absorption Systems, a preclinical contract research organization. Brief details 

of the studies can be could in the Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank Dr. David Cortez for his intellectual contributions in the conception of this project. We 
would also like to acknowledge the Vanderbilt High Throughput Screening Core, an institutionally supported 
facility in which some of these experiments were performed and whose staff provided invaluable assistance.

Funding of this research was provided in part by NIH grants 5DP1OD006933/8DP1CA174419 (NIH Director’s 
Pioneer Award) to S.W.F., R01GM065484 and P01 CA092584 to W.J.C., and ARRA stimulus grant 
(5RC2CA148375) to Lawrence J. Marnett and funding from the National Council for Scientific and Technological 
Development – CNPq and Federal University of Minas Gerais/Brazil to E.M.S.-F.. A.O.F. was supported by a 
Deutscher Akademischer Austausch Dienst (DAAD) postdoctoral fellowship, J.D.P. by the NIH NRSA postdoctoral 
fellowship (F32 CA174315-02) and M.D.F. by the NIH NRSA postdoctoral fellowship (F32 ES021690-01).

References

1. Wold MS. Annu. Rev. Biochem. 1997; 66:61. [PubMed: 9242902] 

2. Wold MS, Kelly T. P. Natl. Acad. Sci. USA. 1988; 85:2523.

3. Xu X, Vaithiyalingam S, Glick GG, Mordes DA, Chazin WJ, Cortez D. Mol. Cell Biol. 2008; 
28:7345. [PubMed: 18936170] 

4. Fanning E, Klimovich V, Nager AR. Nucleic Acids Res. 2006; 34:4126. [PubMed: 16935876] 

5. Cortez D, Guntuku S, Qin J, Elledge SJ. Science. 2001; 294:1713. [PubMed: 11721054] 

6. Cimprich KA, Cortez D. Nat. Rev. Mol. Cell Biol. 2008; 9:616. [PubMed: 18594563] 

7. Andrews BJ, Turchi JJ. Mol. Cancer Ther. 2004; 3:385. [PubMed: 15078981] 

8. Shuck SC, Turchi JJ. Cancer Res. 2010; 70:3189. [PubMed: 20395205] 

9. Glanzer JG, Liu SQ, Oakley GG. Bioorgan. Med. Chem. 2011; 19:2589.

10. Glanzer JG, Carnes KA, Soto P, Liu S, Parkhurst LJ, Oakley GG. Nucleic Acids Res. 2013; 
41:2047. [PubMed: 23267009] 

11. Glanzer JG, Liu S, Wang L, Mosel A, Peng A, Oakley GG. Cancer Res. 2014; 74:5165. [PubMed: 
25070753] 

Patrone et al. Page 8

ChemMedChem. Author manuscript; available in PMC 2017 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rcsb.org/pdb/explore/explore.do;jsessionid=1964B82FF49AD4DF6AC2ECF13F2643D8?structureId=4IPC


12. Patrone JD, Kennedy JP, Frank AO, Feldkamp MD, Vangamudi B, Pelz NF, Rossanese OW, 
Waterson AG, Chazin WJ, Fesik SW. ACS Med. Chem. Lett. 2013; 4:601. [PubMed: 23914285] 

13. Frank AO, Feldkamp MD, Kennedy JP, Waterson AG, Pelz NF, Patrone JD, Vangamudi B, Camper 
DV, Rossanese OW, Chazin WJ, Fesik SW. J. Med. Chem. 2013; 56:9242. [PubMed: 24147804] 

14. Souza-Fagundes EM, Frank AO, Feldkamp MD, Dorset DC, Chazin WJ, Rossanese OW, 
Olejniczak ET, Fesik SW. Anal. Biochem. 2012; 421:742. [PubMed: 22197419] 

15. Baell JB, Holloway GA. J. Med. Chem. 2010; 53:2719. [PubMed: 20131845] 

16. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Adv. Drug Deliver. Rev. 1997; 23:3.

17. Granadillo VJ, Earley JN, Shuck SC, Georgiasdis MM, Fitch RW, Turchi JJ. J. Nucleic Acids. 
2010:1.

18. Bochkareva E, Kasutov L, Ayed A, Yi G-S, Pineda-Lucena A, Liao JCC, Okorokov AL, Milner J, 
Arrowsmith CH, Bochkarev A. P. Natl. Acad. Sci. USA. 2005; 102:15412.

19. Frank AO, Vangamudi B, Feldkamp MD, Souza-Fagundes EM, Luzwick JW, Cortez D, Olejniczak 
ET, Waterson AG, Rossanese OW, Chazin WJ, Fesik SW. J. Med. Chem. 2014; 57:2455. 
[PubMed: 24491171] 

20. Feldkamp MD, Frank AO, Kennedy JP, Patrone JD, Vangamudi B, Waterson AG, Fesik SW, 
Chazin WJ. Biochemistry. 2013; 52:6515. [PubMed: 23962067] 

21. Thorarensen, A.; Ruble, CJ.; Romero, DL. (Pfizer Inc.), Pub No. WO2004018428 A3. 2004. 

22. Otwinowski ZM, W. Methods Enzymol. 1997; 276:307.

23. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, 
Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read 
RJ, Vagin A, Wilson KS, S K. Acta Crystallogr. 2011; D67:235.

24. Emsley P, Cowtan K. Acta Crystallogr. 2004; D60:2126.

25. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral 
GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, 
Richardson JS, Terwilliger TC, Zwart PH. Acta Crystallogr. 2010; D66:213.

Patrone et al. Page 9

ChemMedChem. Author manuscript; available in PMC 2017 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Previously reported RPA PPI inhibitors.
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Figure 2. 
Selected HTS hit compounds.
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Figure 3. 
A) Compound 11 in complex with RPA70N. B) Compound 11 in complex with RPA70N 

with p53 peptide18 superimposed. C) Compound 11 in complex with RPA70N with 

compounds 4 and 5 superimposed. D) SAR strategy for compound 11.
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Scheme 1. 
General synthesis of anthranilic acid-based RPA inhibitors. Reagents and conditions: a) 

Chlorosulfonic acid, reflux, 16 hrs; b) thionyl chloride, 75°C, 4 hrs; c) methyl 2-

aminobenzoate-R2, THF, 12 hrs d) aniline-R1, toluene, 70°C, 12hrs; e) 2M LiOH, 55°C, 2 

hrs.
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Table 1

Structure activity relationships in Site-1.

Compd R1 Kd (µM)[a] LE[c]

11 4-Br 30±6 0.21

12 H 156 ± 11 0.18

13 3-Me 165 ± 34 0.18

14 4-Me 196 0.17

15 4-OMe 234 ± 3 0.16

16 4-ethyl 95 ± 6.5 0.18

17 4-isopropyl 76 ± 5.5 0.17

18 3-Cl 29 ± 2 0.21

19 4-Cl 44 ± 0 0.20

20 3,4-diCl 7 ± 3 0.23

21 3,4-diMe 150 ± 11 0.17

22 3-Cl, 4-Me 43 ± 3.5 0.19

23 3-Me, 4-Cl 58 ± 11 0.18

24 2-naphthyl[b] 83 ± 8 0.17

25 3',4'-dichloro-[1,1'-biphenyl]-3-amine[b] 4 ± 0.5 0.20

26 indane[b] 106 ± 5.5 0.17

27 cyclopentyl[b] >250 0.18

28 cyclohexyl[b] 193 0.18

29 4-aminotetrahydropyran[b] >250 n.c. [d]

30 cycloheptyl[b] 110 ± 4 0.19

31 trans-4-Me cyclohexyl[b] 81 ± 10 0.20

32 cyclohexylmethyl[b] 126 ± 1 0.19

33 benzyl[b] >250 n.c.[d]

34 azepane[b] 208 0.18

35 octahydrocyclopenta[c]pyrrole[b] 222 ± 28 0.17

36 isoindoline[b] >250 n.c. [d]

[a]
Average Kd values (n=2) calculated using Cheng-Prusoff equation from IC50 values measured in FPA competition assay.

[b]
Entire ring system replaces the phenyl.

[c]
LE values calculated using LE = 1.4*pKd/HAC, using the FPA data.

[d]
n.c. = not calculated.
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